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Model of transverse electrical conductivity of 
metal matrix composites above liquid nitrogen 
temperatures 
Part 1 Regular arrays of fibres 
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The present theories of transverse electrical conductivity of metal matrix composites (M MCs) 
containing nonconducting continuous cylindrical fibres are inadequate to predict experimental 
measurements. In this paper, we present a model of transverse electrical conductivity that 
predicts experimental data reasonably well for the case of an MMC material reinforced with 
nonconducting or poorly conducting continuous fibres. It is based on the concept that trans- 
verse conductivity consists of two contributions: the electrical resistivity of the bulk material 
modified by periodic variations in the bulk cross-section due to the presence of nonconduct- 
ing fibres; and a disturbance in electron transport due to nonuniformity in the electric field, 
caused by the presence of the fibres, that extends some distance away from and all around the 
fibres. To calculate this nonuniformity, we use the well-known solution of the potential field 
for a conducting cylinder in a uniform electric field and invert it so that it becomes a problem 
of nonconducting filaments in a conducting matrix. This gives a value of the transverse electri- 
cal resistivity for boron/aluminium (B/AI) containing 60 vol% fibre in nearly exact agreement 
with experimental data. The theory is compared to a modified capacitance model developed by 
Keller [1] for dielectric materials. The model discussed in this paper does not predict the trans- 
verse electrical resistivity of MMCs reinforced with very small-diameter fibres (Gr/AI, AI203, . 
etc.) where the fibres are randomly distributed in a plane normal to their longitudinal axis. This 
problem will be discussed in a companion paper. 

1. Introduction 
A number of transverse electrical conduction (resis- 
tivity) models for in situ and metal matrix composites 
(MMCs) containing nonconducting continuous fibres 
have been proposed. All of these models are macro- 
scopic. An excellent review of these models was recently 
given by Jenkins [2]. We will briefly discuss some of 
the more important models. Liebmann and Miller [3] 
proposed the following equation to calculate the elec- 
trical resistivity of InSb-Sb eutectic alloys 

1 1 
_ = n ( l _ v  ~/2) 
Q± QI,sB 

+ [0,,ss//lk v--"~i---J+vl/2~ + ~Sb]-' (1) 

where v = Vr/(1 + Vr), where Vf is the fibre volume 
fraction of the composite; #_t is the transverse electri- 
cal resistivity; and #JosB and QSb are the resistivities of 
indium antimonide and antimony, respectively. This 
theory explains the conductivity of InSB-Sb eutectic 
alloys by means of a simple electric analogue of the 
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eutectic structure. Applying this equation to MMCs 
where the fibre resistivity is considered much greater 
than the resistivity of the bulk matrix, Equation 1 
reduces to 

~ l  ~ ~0( 1 - - v l / 2 )  - l  (2) 

where ~0 is the matrix or bulk resistivity. 
There are three theories based on the calculation 

of dielectric constants of a composite consisting of 
parallel fibres in a matrix with a different dielectric 
constant. These theories have been used to calculate 
the transverse electrical resistivity of composite mate- 
rials, including MMCs. The reasoning behind this 
approach was that the dielectric constant can be 
replaced by the corresponding expressions for electri- 
cal conductivity. The theory Of Rayleigh [4], which is 
based on a dilute suspension for a random dispersion 
of spheres, gives 

o i - 0 " 0  = o r - o 0 ~  (3) 
~ra. + ¢r 0 ¢7f + o" o 

where #z is the transverse conductivity of the 
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TAB L E I Comparison between model predictions and measured transverse electrical resistivity of B/A1 

Model Volume fraction 
and 

0.15 0.223 0.35 0.60 equation 
Calculated* Measured Calculated Measured Calculated Measured Calculated Measured 
(/~qcm) [lO]t (pf/ern) [10] 0glcm) [10] (#f4 cm) [9] 

( /~cm) (gD ore) (pD crn) (ttflcm) 

Liebmann and 5.20 4.6 5.79 5.45 6.76 6.91 8.56 35.5 
Miller [3], (0.89)~ (0.94) (1.02) (4.14) 
Equation 2 

Rayleigh [4], 4.49 4.6 5.23 5.45 6.90 6.91 13.28 35.5 
Equation 4 (1.02) (1.04) (1.00) (2.67) 

Davies [5], 4.74 4.6 5.99 5.45 11.07 6.91 - 16.75§ 35.5 
Equation 7 (0.97) (0.91) (0.62) (-) 

Keller [1], 3.84 4.6 4.87 5.45 6.97 6.91 15.21 35.5 
Equation 8 (1.20) (1.12) (0.99) (2.33) 

*In these calculations, we assumed Qo -- 3.32/~flcm for 6061 AI ribbons [9]. 
tThe data from Yatsenko [10] were corrected to have a matrix resistivity of 3.32gflcm. 

The numbers in parentheses are the factors by which the measured values are larger, equal, or smaller than the predicted values. 
§ When applied to MMC, Davies' theory (¢f ~ %) gives negative values for QI when V~ > 0.5. 

composite; or and o0 are the fibre and matrix conduc- 
tivities, respectively; and Vr is the fibre volume 
fraction. For graphite/aluminium (Gr/Al), alumina/ 
aluminium, boron/aluminium (B/AI), and silicon car- 
bide/aluminium (SiC/M), af ,~ ~0, so that Equation 3 
reduces to 

= (4) 

Another theory due to Davies [5] gives the following 
implicit relation. This model is known as an effective 
medium theory, which is equivalent to the coherent 
potential approximation in the theory of disordered 
alloys or to the T-matrix approximation in scattering 
theory, and to a random array of parallel cylinders. 

#l  = a o +  2~OL or (5) 

which leads to a quadratic equation in eL with the 
following positive solution 

O'a. = - - ½ ( 1  --  2Vf) (Of - -  0"0) 

x 1 + I -- [(l -- 2Vf)(Or- o0)]2J ) 

(6) 

and when of ~ ~0 is considered, Equation 6 reduces to 

Q, = 00(I - 2Vr)-' (7) 

The theory of Pcterson and Hermans [6] is essentially 
the same as that of Davies and gives the same result. 

Keller [I] and Keller and Sachs [7] proposed another 
theory for an array of nonconducting cylinders in a 
conducting medium, given by 

2 ( v '~'/2 
Q~ = ~o (v - 2)  '/2 tan-' \ ~ - - Z - ~ j  (8)  

where v = (n/Vt) 1[2. This has the disadvantage of 
giving Q± = 0 at Vf = 0, instead of  Qx = flo, and 
becomes singular at Vf = ~/4. This expression was 
shown by Crank [8] to be equivalent to an effective 
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diffusion coefficient in cases of diffusion perpendicular 
to an array of parallel circular obstructions. 

Calculations using the above theories give results 
shown in Table I for a B/AI composite. These results 
are compared to measurements made by Abukay et aL 
[9] and Yafsenko [I0]. The numbers in parentheses are 
the factors by which the measured values arc larger, 
equal, or smaller than those predicted by the models 
and equations indicated. Note that for volume frac- 
tions up to 35% the models give gairly good predic- 
tions. This is expected because the models in question 
are known as dilute suspension models. 

In this paper, we present a model of transverse 
electrical conductivity of /n situ composites and 
MMCs at temperatures above about that of liquid 
nitrogen. Below that ternperature threshold, and for 
very small-diameter fibres such as graphite fibres in an 
aluminium matrix and /n situ composites, electron 
scattering begins to contribute additional resistivity to 
the composite which cannot be calculated by macro- 
scopic models, as shown by Roig and Schoutens [I l] 
for longitudinal conductivity. 

2. Theory 
Table I shows that present theoretical treatments of  
the transverse electrical conductivity of MMCs 
predict values that are a factor of  about 2 to 4 below 
measured values for high volume fraction B/A1, and 
other data to be discussed below. The measured resis- 
tivities for a volume fraction of 0.6 are the work of 
different authors [9] compared to those for volume 
fractions of 0.15, 0.223, and 0.35 [10]. This might 
account for the disagreement of the theoretical pre- 
dictions for the high volume fraction, and also because 
all measurements were clearly not on the same samples. 
One hypothesis is that the transverse electrical resis- 
tivity in an MMC is the sum of  two contributions: the 
first is due to the fact that the electrical resistivity 
varies periodically with the position of  the fibre in the 
matrix; and the second comes from disturbances in the 
electron drift as they proceed transversely across the 
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Figure 1 Cell model used in cal- 
culating periodic variations in 
bulk conductivity: (a) cell, (b) 
variable cross-section, (c) con- 
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array of  fibres. In mathematical terms, 

Q± = 00f(Vf)[1 + C(V~,=)] (9) 

wheref(Vr) is a resistivity function dependent on the 
shape and volume fraction of  fibres, and C (Vr, ~) is a 
function that accounts for the fact that the transverse 
electric field in the bulk is nonuniform due to the 
presence of fibres. Moreover, from classical electro- 
dynamics, such a nonuniformity has a range =, beyond 
which it is again uniform. 

2.1. Der ivat ion of the resist iv i ty func t ion  
Fig. 1 shows a square cell of  composite material with 
a fibre of radius a at each corner and each fibre 
separated by a distance D as shown. We conceptually 
divide the cell into four regions, marked I to IV, and 
proceed to calculate the resistivity of region I of  unit 
depth in the direction of the fibres. It is assumed 
that an electric field is applied in a direction perpen- 
dicular to the fibres and along the horizontal axis 
joining two fibres, thereby creating a current as 
shown. In region I of  the cell, the elemental resistance 

dR near the fibre is 
dx 

dR = Q0 A(x) (10) 

where dx is the infinitesimal matrix thickness normal 
to the current as shown in Fig. lb, and A(x) is the 
variable cross-section in that region when 0 ~< x ~< a, 
o r  [ °  ] A(x) = a + - ~ -  Y(x) L (11) 

where L is the distance along the fibre, and 
Y(x) = (~  - x2) I/2. Substituting Equation 11 into 
Equation 10 and integrating gives 

0o ['. dx (12) RI j0 a + (D/2) - (a 2 - x2) v' 

The integration of Equation 12 is carried out by letting 
1 + DI2a = =o and using successively w = xla and 
w = sin 0. After integration, this gives 

O 0 [  ~ ( %  + l~l/21 20[0 1]2 t a n -  1 
R1 = 7 - ~ + ( ~  - I)  \ ~ - - : - f -  ] )  _1 

(13) 

1 8 3  



The resistance of the shaded region shown in Fig. lc 
is 

D/2 = -~(1 _ 1 )  (14, 
R2 = QO (a + D/2) L 

and the total resistance of region I is R. + R2, or 

00[( 1 
Ro = 7 1 ~o 

2,o + 1)1'  l 
+ (a0 2 - 1) 1/2 tan-I \~0 -- l J  ] (15) 

For convenience in computing R in the limit, we set 
fl = 1/%; then, Equation 15 becomes 

. o  .0[0 

+ (1 - /]2)1/2 tan-I \1 - - - - ~ )  ] (16) 

where R0 = oo/L. When the fibre radius approaches 
zero (a -~ 0), fl --* 0 and R~ = Ro, as it should. The 
second term in the bracket is greater than ~/2 for 

< 1 and, consequently, the term in the bracket is 
always positive, giving R always positive. Moreover, 
as the space between fibres approaches zero (D ~ 0), 

~ 1 and R ~ 0% meaning that when the fibres 
are in contact, the composite resistance is at least that 
of the fibres, which can be quite high for MMCs 
containing graphite or boron fibres. 

Now, resistance of regions I and II is 2/~, and the 
resistance of regions I to IV is then the total resistance 
given by 

1 1 1 1 
R-'-~ = 2--~ + 2R~ = R--~ (17) 

Thus, the total resistance of the cell is given by Equa- 
tion 16. 

Equation 16 can be converted to electrical resistivity 
in the following manner. The resistance of a sample of 
composite with respect to the resistance of a sample of 
bulk material without fibres (Vf = 0) is 

R(fl) = ~ = f(fl) (18) 

where 

2 (1 + fl~'/21 (19) 
+ (1 - fl2)1/2 tan- '  \1 - - - ~ )  ] 

and for the bulk, Ro = Ool/A = O,o(D + 2a)/ 
L(D + 2 a ) =  Oo/L, and for the composite, /~ = 
ool/A = Qo(D + 2a)/L(D + 2a) = oc/L, where Qc is 
the composite resistivity. Substituting these values in 
Equation 18 yields 

Q--~ = f ( f l ) .  (20) 
Q0 

Equation 20 is the transverse electrical resistivity of an 
MMC material due to periodic variations in the bulk 
cross-section in the direction of the current due to the 

T A B L E  II Values of Vtas a function offl  from Equation 24 

Vf 

0.0 0.000 
0.1 0.357 
0.2 0.505 
0.3 0.618 
0.4 0.714 
0.5 0.798 
0.6 0.874 
0.7 0.944 
0.785 1.000 

presence of fibre boundaries, assuming the electric 
field remains uniform. 

Now, a relationship between fl and Vt must be 
found so that the above derivation has practical util- 
ity. From Fig. la, we note that the volume of fibre in 
the cell is 

vf = ~ra2L (21) 

and the total volume of the cell is 

v T = (D + 2a)2L (22) 

so that the fibre volume fraction is 

Vf = v~ = ~r 1 + /2 VT 4 ]9 (23) 

where L is the length of the fibre. Recalling that 
~o = 1 + D/2a and substituting into Equation 23 
gives Vt = n/(4a02) and, using the definition of fl = 
1/~0, we obtain 

f12. = (24) 

Thus, Equation 20 can be written as 

O~ = Q0f(V~) (25) 

where Vf is substituted for fl in Equation 19 according 
to Equation 24. Table II gives values of Vt as a func- 
tion offl, and Table III gives the values of the resistivity 
functionf(Vt) as a function of Vr. We see in Table III 
that f(0)  = 1, as it should, andf(V~) ~ oo for Vf 
n/4. For 60vo1% B/6061 A1 composite, we note 
that according to Equation 25, the transverse elec- 
trical conductivity is 0o = 0af(V~) = 3.32(3.977) = 
13.204 gD era, or about the same value as that given by 
Rayleigh's Equation 4 [4] shown in Table I, which is 
a factor of about 2.7 below the value measured by 
Abukay et al. [9]. 

T A B L E  I I I  Values of the resistivity function f(Vr) as a func- 
tio~ of Ff 

f(vf) 

0.0 1.000 
0.1 1.144 
0.2 1.357 
0.3 1.657 
0.4 2.092 
0.5 2.770 
0.6 3.977 
0.7 6.993 
0.785 oo 
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Figure 2 Model for calculating the ratio AF/A c, 

2.2. Derivation of the correct ion funct ion 
An applied uniform electric field causes electrons 
to drift uniformly through a near-ideal metal in the 
absence of obstacles. In the presence of obstacles such 
as grain boundaries, dislocations, and defects, the 
electric field is locally nonuniform, When the metal is 
reinforced by nonconducting cylindrical fibres placed 
perpendicularly to the uniform electric field, that field 
becomes locally and periodically nonuniform. Thus, 
the electrons drift along periodically varying field 
lines. The field lines in the immediate neighbourhood 
of the fibre terminate at the fibre/matrix interface - 
approximately normal if the fibre position is an empty 
cavity, or at an angle proportional to the dielectric 
constant if the cavity is filled with a dielectric fibre. In 
the following analysis, we will assume that the matrix 
is a near-ideal metal so that the electric field in the 
absence of obstacles is uniform and that the cavity is 
empty. (Inside a perfect conductor, there cannot be 
electric fields.) Consequently, the dielectric properties 
of the fibre are not considered. In essence, then, this is 
the inverted problem of a conducting cylinder in a 
uniform electric field in empty space. From classical 
electrodynamics [12], the scalar potential at a point 
P(r,O) in the neighbourhood outside the fibre is given 
in cylindrical coordinates by 

q~ = - Eor cos O ( 1 -  ~ )  (26) 

where E 0 is the uniform electric field, a is the fibre or 
cavity radius, and r and 0 are the polar coordinates of 
the point P where the field components are deter- 
mined. The radial and angular components of the 
electric field are obtained from the scalar potential by 

= - V ~  or 

Or = E° c°s O 1 + (27) 

l a~ --Eo sin 0 { 1 -  ~}(28)  Eo - r aO = 

The total field at P(r, 0) is 

ET 2 = E~ + E~ (29) 

and to find the average value over the entire space 
f roma ~ r ~< ~ a a n d f o r 0  ~< 0 ~ 2 ~ , w h e r e ~ i s a  
dimensionless range parameter, we integrate both 
sides of Equation 29 as follows 

I~ ~ ~:  E2rr dr dO = f~  ~:= (E 2, + E~)r dr dO (30) 

Substituting Equations 27 and 28 into Equation 30 
and integrating gives 

( 1 )  
<E2> = Eo 2 1 + ~ (31) 

Equation 31 shows that the total electric field calcu- 
lated in this manner consists of two components, the 
uniform field term plus a second order term that 
depends on the range parameter ~. It is this second 
order term that, on average, accounts for the effects of 
nonuniformity upon electrons in the electric field in 
the neighbourhood of a fibre. Therefore, we can write 

6E o 1 
--- - ( 3 2 )  

E0 
where E0 is the uniform electric field, and rE0 is 
the perturbation of that field. The electric field is 
nonuniform around the fibre out to a range ua ~< 3a, 
as can be seen in electric field maps for this classical 
problem. 

The range =a of this nonuniform field does not 
occupy the entire cell of interest but only a region 
of area AF; as shown in Fig. 2. For high fibre volume 
fraction, the areas are expected to overlap. This over- 
lap problem is not treated in the simple model discussed 
in this paper. Consequently, there is a region in the cell 
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where the electric field is uniform and other regions 
where it is not uniform. Letting the area of non- 
uniform field be AF for • ~< 3 and letting A= be the 
area of the cell, as shown in Fig. 2, then the correction 
function is taken to be 

C(Vr,=) = 6E0(AF)Eo A-'~ = =A=IAF (33) 

and we will see that this assumption can fit the 
data, and from Fig. 2, A~ = (D + 2a) 2 and AF = 
rca2(~ -- 1), so that Equation 33 becomes 

C(Vr,=) = {~2~ - - - ~ 1 }  Vf (34) 

where Equation 23 was used. This correction factor 
has the correct form since for Vr = 0, C(0, u) = 0. 
Therefore, in the absence of fibres, there are no non- 
uniformities in the electric field. 

2.3. Complete transverse resistivity equation 
Returning to Equation 9, we have 

0.  = 0of(Vr)[ 1 + C(Vr, =)] 

and substituting Equation 34 gives 

wheref(Vr) is given by Equation 16. Equation 35 gives 
0± = 00 for Vf = 0 since f(0) = 1, and the second 
term vanishes at Vr = 0. Moreover, 0± -* oo when 
Vf --, n/4 since f(Vr --, n/4) --, ~ ,  which corresponds 
to the fibres being in actual contact with one another 
in the matrix. It should be emphasized that Equation 35 
applies only for the case where the fibres in the matrix 
form a regular array, either square or quasi-square. 
This is a consequence of the fabrication process 
employed in large-diameter fibre reinforced MMC 
materials such as B/A1. For the case of very small- 
diameter fibres, of the order of a few tens of micro- 
metres, the distribution of fibre cross-sections in a 
plane normal to the fibre axis is nearly random. The 
electrical resistivity for such cases requires a different 
theory, which is discussed elsewhere [13]. 

3. Discussion 
Returning to Equation 35 and using the value • = 3, 
there results 

0± = 00f(Vr)( 1 + 2.667 Vf) (36) 

The predicted values of the transverse electrical con- 
ductivity of MMCs are given in Table IV and plotted 
in Fig. 3 as a function of Vf. The predicted value of 0± 
is seen to pass close to the datum point for 60 vol % 
B/A1 composite. Also shown are three data points, 
joined by a line of short dashes, from the work of 
Yatsenko [10]. The data published by Yatsenko were 
for a matrix resistivity of 3.21 # f~ cm. Consequently, 
these data were scaled in Fig. 3 by the factor 3.32/ 
3.21 = 1.036 to make comparisons meaningful. As 
mentioned before and shown in Table I, the theories 
discussed in the introduction give predictions in good 
agreement with Yatsenko's data. The agreement with 
the datum point for 60 vol % B/AI appears excellent: 
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34.33#Qcm predicted compared to 35.5#Qcm 
measured, or a difference of 3.3%. Such an agreement 
may mean the following, aside from being fortuitous. 
At high volume fraction, the electric field intensity 
around fibres increases while the region of field uni- 
formity between fibres decreases, resulting in a net 
increase in the composite resistance. As the fibre dis- 
tance increases (lower values of Vr), this model seems 
to overpredict the field effect. We should recall that 
the model is rather simplistic, and a more detailed 
description might be in order. It turns out that con- 
sidering the field contributions from all fibres sur- 
rounding one fibre in a cell by assuming superposition 
of field does not improve predictions very much at low 
values of Vr [14]. 

Another group of data for Gr/AI and Gr/Mg [15] 
is shown in Fig. 3. An examination of photomicro- 
graphs of such composite materials reveals very 
irregular, almost random fibre distributions in a plane 
perpendicular to the fibre axis. At low fibre volume 
fraction, these photomicrographs show numerous fila- 
ments in actual physical contact forming "strings" 
separated by irregular regions of matrix materials. 
Under such conditions, one would thus expect, on 
intuitive grounds, that the current follows tortuous 
paths with statistically varying resistivity. At high 
volume fraction, the number of filaments in physical 
contact is so large as to isolate islands of matrix 
material. Consequently, one would expect the trans- 
verse conductivity for these materials to be higher 
than that shown by the present model or the data for 
B/A1. Aside from matrix resistivity due to periodic 
variation in the matrix cross-section in between fibres 
and the added electric field effect discussed, it is likely 
that there is a capacitance effect in the immediate 
neighbourhood of closely spaced fibres. To test this 
hypothesis, we have modified Keller's theory [1], 
which is based on the capacitance that exists between 
two fibres along the direction of the current for con- 
ducting fibres embedded in a dielectric. Keller then 
inverted the result of his analysis to account for resis- 
tivity transverse to nonconducting cylinders embed- 
ded in a conducting matrix. This resulted in Equation 
8 discussed above. If we neglect the electric field non- 
uniformity at 0.1 ~< Vr ~< 0.4 and consider only resis- 
tivity variations and capacitance effects, the modified 
Keller theory can be written as 

01 = 00[f(V~) + C(~)] (37) 

T A B L E  IV Values of Q~ predicted from Equation 36 

V~ 0, 
(aacm) 

0.0 3.32* 
0.1 4.81 
0.2 6.91 
0.3 9.90 
0.4 14.35 
0.5 21.46 
0.6 34.33 
0.7 66.56 
0.785 oo 

"0o = 3.32/at~cxn for 6061 A1 [9]. 
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Figure 3 Plot of the present theory and 
Keller's original and modified theories, 
and comparison with some experimental 
data. Room temperature data: (o) B/ 
6061A1; (n) 29vo1% Gr/201A1, with 
0.004 in. 2024 AI cladding, liquid nitrogen 
quenched 3 times; (£,) 24vol % Gr/201 AI, 
with 0.004 in. 2024 A1 cladding, liquid nitro- 
gen quenched 3 times; ($) 38.5vol % Gr/ 
AZ31B Mg; (ll) 27 vol % Gr/AZ31B Mg; 
(&) 27.75vol % Gr/201 A1, with 0.002 in. 
aluminium cladding; (I) 29vo1% Gr/ 
201 AI, with 0.002 in. aluminium cladding. 
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where f(Vf) is given by Equation 19, and 

2 ( v "~ '/2 
C(Vf) = (v - 2) v~ t an - '  \~---Z-~,} (38) 

where v = (Ir/Vr) I/2. The predictions from Equa- 
tion 37 are shown in Fig. 3 as a line of  long dashes that 
passes through the group of  Gr/AI and Gr /Mg data 
but falls below the B/A1 datum at Vf = 0.6. At higher 
values of  V~, one would expect larger values of  Q j_ for 
Gr/AI or Gr /Mg than for B/AI, as discussed above. At 
the present time, some theories are being considered to 
explain the phenomenon when the fibre arrays are 
highly irregular or random [13]. Equation 37 has the 
required behaviour at the l imits:when Vf = 0, r± = 
Q0, and Q± --, to when Vt --, 7r/4. 

The model described in this paper can be scaled to 
other temperatures (away from room temperature) 
above about  liquid nitrogen temperature and not too 
close to the matrix melting point. This can be done by 
using the following scaling rule 

0 . ( T )  = Q .  - -  (39) 

where Q~ is the room temperature resistivity, T is the 

temperature of  interest in degrees K, and a is a non- 
integer. F rom the work of  Abukay et al. [9], a = 
- 0 . 7 4  for B/6061 AI. 
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